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Orthogonal curvilinear mesh networks are generated numerically between the wavy walls 
of two-dimensional peristaltic channels. A dual iterative procedure is developed to facilitate 
the conformal mapping, as well as to adjust mesh dimensions when necessary to fit the 
boundaries of the flow region. An implicit finite-difference technique is employed to obtain 
transient solutions of the Navier-Stokes equations. The effects of initial conditions on the 
flow establishment are discussed, along with considerations of numerical accuracy. The 
effects of certain nonconservative difference forms of the governing equations are explored. 
A calculated velocity field for a two-dimensional nonlinear peristaltic flow is supported 
by laboratory flow observation. The present method is applicable for laminar flow in a 
nonuniform channel with or without wall peristalsis. 

1. INTR~DUC~~N 

In recent years there has been considerable progress in developing computational 
techniques to solve the equations of fluid motion in regions with curved or irregularly 
shaped boundaries. Contributions have come from such diverse branches of physics 
and engineering as nuclear reactor design, meteorology, aerodynamics, and physiol- 
ogical flow simulation. Several ingenious and sophisticated methods have been 
presented to treat irregular boundaries such as free surfaces [7,25], fluid-fliud 
interfaces [16], and the slip condition at a solid boundary [23,24]. For the nonslip 
condition, however, curved boundaries have usually been approximated by irregular 
mesh. Ad hoc nonuniform mesh schemes are effective when judiciously applied [12] 
but the programming logic is complicated. Moreover, numerical instabilities may arise 
because of large local variations in mesh sizes, and accuracy is adversely affected 
when the true physical boundary conditions are adjusted to accomodate the compu- 
tational mesh. 
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Body-fitted orthogonal grids have been constructed by several investigators using 
conformal mapping to transform a curved region into a rectangular polygon. 
Barfield [3] employed the complex Green’s function to map an irregular flow region 
into the unit circle, and then onto the edges of a rectangular polygon through a 
Schwarz-Christoffel transformation. He deemed it advisable to divide “elongated” 
physical regions into subregions in order to minimize numerical errors in the boundary 
mapping. Interior mesh points were then determined by point-successive over- 
relaxation of the inverse Laplace equations, and an interpolative technique was used 
to match the mesh lines at the subregion interfaces. A somewhat different body-fitted 
mesh was generated by Winslow [26]; his technique employed linear interpolation to 
distribute mesh nodes along boundaries and interfaces, and then mapped a non- 
uniform triangular mesh onto a regular array of triangles in the transformed plane. 
In an early work of Thorn and Apelt [20], orthogonal mesh networks coincident with 
the equipotential lines and streamlines of potential flow were constructed. The 
Laplace equation was first solved iteratively to determine values of one coordinate 
variable (e.g., X) both in the interior of the transformed region and along its bound- 
aries. The conjugate coordinate variable ( JJ) was then determined by integration 
using the Cauchy-Riemann condition. With symmetromorphic figures (i.e., square 
mesh in the transformed plane), they noted that for some geometries it was not always 
possible to obtain a mesh network properly fitted to the physical region (e.g., part of 
a mesh may protrude through a segment of the boundary.) In the present study, 
we have extended Thorn and Apelt’s procedures to select a rectangular mesh which 
does fit all the boundaries. Also, a dual iterative procedure has been developed to 
reduce errors associated with the solution of y in Thorn and Apelt’s method. 

Various techniques for generating body-fitted nonorthogonal meshes have been 
reported [2, 4, 211. In such coordinate systems, extra terms must be added to the 
conservation equations, thus increasing the complexity of coding and the computer 
time required per iteration. In some situations, however, the greater flexibility of 
zoning afforded by nonorthogonal mesh may offset this handicap, especially if a 
particular mesh structure speeds convergence, or if increased resolution is, desired 
in critical regions such as boundary layers. 

Using potential flow nets fitted to curvilinear boundaries, Thorn [19] in 1933 
determined the stream function from the vorticity-transport equation for slow 
viscous steady flow around a circular cylinder. Also through laborious hand calcu- 
lations, the numerical solutions for higher Reynolds numbers (up to 1000) were 
reported by Allen and Southwick [l]. Other geometries, such as flow through channel 
constrictions and between doubly-infinite rows of cylinders, were considered by 
Thorn and Apelt [20]. A similar solution to the vorticity-transport equation was 
employed by Lee and Fung to analyze the flow of blood in locally constricted tubes 
at small Reynolds numbers [14]. 

Using the Arbitrary Lagrangian Eulerian (ALE) method, in which integral forms 
of the continuity and momentum equations were solved for each cell in a mesh of 
arbitrarily shaped quadrilaterals, Daly [27] studied pulsatile flow through smoothly 
curved stenoses. Peskin [28] employed a rectangular mesh to treat flow in regions 
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containing immersed irregular boundaries which interacted with the fluid, replacing 
the boundary by an equivalent field of forces defined at the nearby mesh nodes. 

Recently, a steady solution in orthogonal coordinates using the primitive variables 
(velocity and pressure) to treat the problem of unidirectional coolant flow between 
nuclear fuel rod bundles was reported by Meyder [ 151. Thompson ef al. [22] employed 
a generalized nonorthogonal coordinate system to solve the vorticity-transport 
equation for flows around several bodies. Their boundary vorticity was determined 
by a modified false-position algorithm which included the Jacobian of the coordinate 
transformation. A detailed formulation which coupled the heat equation with velocity 
and pressure in a generalized coordinate system was given by Gal-Chen and 
Somerville [5,6]. They employed a linear coordinate transformation to study transient 
thermally driven atmospheric convection up a two-dimensional mountainside, using 
a free slip/rigid condition to treat the lower boundary. 

Unsteady flows through curved and flexible-walled tubes of irregular geometry 
are inherent in the study of biological flows [lo]. An interesting case is peristaltic 
pumping, where the incompressible fluid contents of a distensible-walled tube are 
transported in bolus form (i.e., as “lumps” of fluid) by means of waves of transverse 
deformation propagated along the walls. This pumping mechanism characterizes the 
transport processes in the ureters and the gastrointestinal tract, and has implications 
for the design of improved roller pumps and heart-lung machines [ 131. 

In this study, an implicit finite-difference method is used to obtain the velocity and 
pressure fields in orthogonal curvilinear coordinates for two-dimensional peristaltic 
flows. The steady-state solution is obtained expediently through the proper selection 
of initial conditions. The method is well suited for time-dependent flow in nonuniform 
channels with or without wall peristalsis. 

2. GENERATION OF ORTHOGONAL AND ANALYTICAL CURVILINEAR MESH 

A numerical procedure is developed here to generate an orthogonal curvilinear 
coordinate system (01, p) which maps the irregular channel region R into a rectangular 
region R' (Fig. 1). The geometry of the channel walls is prescribed by the function g(x). 
Two types of wavy boundaries are considered: 

(1) The periodic case: The channel walls are periodic in the physical plane (x, y), 
in which case the repeating region of interest in R can be prescribed a priori. 

(2) The nonperiodic case: The region R is characterized by a single wall wave 
on an otherwise uniform channel. 

For computational flow simulations, a simple orthogonal curvilinear mesh can be 
taken from an inverse solution of the Laplace equations 

a2x a2x v2x = 7g$ + aS” = 0, 

v2y = 2 + 3 = 0, 
a aP 
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(a) Definition sketch of the physical region R. (b) Mesh structure in the transformed 

where 01 and /I can be considered as the equipotential lines and streamlines, respec- 
tively, for an inviscid flow. The boundary conditions for solving 01 and /I are 

PI wan = flZ = constant; aalan Iwall = 0, (3) 

where a/&r indicates the normal derivative. The remaining boundary conditions 
(i.e., at the inlet and outlet sections of the channel) will be specified later. 

If a pair of wavy walls is symmetric with respect to the axial plane of the channel, 
the region R can be reduced to that bounded by the conduit wall, the axis, and the 
sections x1 = 0 and x2 = X. When R is mapped onto the region R’ in the c+3 plane 
(see Fig. l), the choice of (/3, - &) corresponds to specifying the discharge of an 
inviscid flow through the channel. Such a choice uniquely determines the potential 
difference (I+ - c+), where x1 maps onto 01~ , and x2 maps onto 01~ . The numerical 
value of (c+ - a,) is not yet known, although it is coupled with (pZ - pi), (x2 - x1), 
and the solution of Eqs. (1) and (2). For a nonperiodic wavy channel region, (Q - al) 
could be chosen such that the mesh size dol is equal to the mesh size dp, with an 
integral number of meshes M in the a-direction. In this case, neither CL~ nor 01~ has 
to be aligned with a predetermined x. These conditions permit straightforward 
solution of Eq. (2) in a square or rectangular mesh in the transformed plane, as 
described by Thorn and Apelt [20] using an inverse method. For flow in a periodic 
wavy channel, the equipotential line a1 is specified to be at x = x1 , and 01~ at x = xZ . 
An integral number of symmetromorphic meshes (dor = d/3), however, cannot 
generally be chosen, as there might be a partial overlap of the last square mesh at 
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one end (xz , for example) of the boundary. That is, the difference (CQ - LXJ is not 
known, but is a part of the solution. 

Should an analytical function or mesh not necessarily be sought, the boundary 
condition 01~ and the numbers A4 and N of mesh in the (II and /? directions may be 
chosen a priori before solving Eqs. (1) and (2). The orthogonal meshes (OL, rs> thus 
obtained do not necessarily represent, respectively, the potential and stream functions. 
The potential function 4, however, will be solved from 

where h, and h, are the metrical coefficients, defined as 

h, = [(s)2 + (+g2y2; h2 = [($)’ + ($)2]1’2. (5) 

The velocity components in the 01 and /3 directions derived from this potential are 

(6) 

The boundary conditions for Eq. (4) at the wall and the longitudinal axis, in the 
moving frame, are 

(7, 8) 

indicating, respectively, that the velocity ? is tangent to the wall element dS at the 
wall, and that the flow is symmetric about the longitudinal axis. 

When the Cauchy-Riemann condition is not required, it will be observed that an 
orthogonal curvilinear coordinate system will remain orthogonal under multi- 
plication of either or both coordinate variables by respective constants. Because of 
this invariance, one can simply set dol and ~$9 equal to unity. 

The numerical procedures for solving Eq. (4) can be bypassed if the orthogonal 
coordinate functions (01, /?) are also analytical. In this study, a numerical method 
has been developed to solve Eqs. (1) and (2) along with the determination of the 
boundary condition 01~ or (a2 - I&. Also different from the method of Thorn and 
Apelt, a dual iterative technique is employed to improve computational accuracy. 
The numerical procedure is described as follows. 

1. For preselected values of d/I and d 01, Eq. (1) is solved iteratively by a 
finite-difference method with a prescribed boundary x. Notice that except on both 
ends (x1 and x2) the distribution of x on the wall was assumed at this stage. An 
iterative procedure is then applied to solve Eq. (1) for x on the wall between X, and x2 
using a backward finite-difference scheme in the /3 direction; values for x along the 
center line are determined iteratively from the average values of x at neighboring 
nodes using the well-known “twenty” formula [20]. 
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2. Values of y on the wall are calculated from the geometry g(x) of the wall. 
New inlet and outlet values of y are then determined from the fact that x and y are 
conjugate functions in R’, i.e., 

Y2 - Yl = s 2 ww 4, 
1 

x2 - x1 = - l2 (ay/aa) d/3. 
s WI 

Equation (9a) is approximated to fourth order in dol and d/3 by Lagrangian formulas 
of the type 

yi,j = Y&j-l + ; I[-22 g - $ 3 ( 11 ki + X&j-1) 

+ [36 g + 3 ($,“I (xi+l.j + xi+l,i-1) 

+ [-18x 43 - 3 ($,"I (&+2.i + -Q+z.d 

+ [4 g + ($)"] C&+3,5 + xi+3.,-a!. 

Because of the accumulated numerical errors, the integrated values of y for the wall 
at the inlet (x = 0) and the outlet (x = X) do not coincide with those evaluated 
from the wall geometry. The difference is then distributed proportionately over the 
inlet and outlet sections. With these adjusted values of y on the inlet and outlet, 
Eq. (2) is solved for the interior y field. Notice that in Thorn and Apelt’s computation, 
all the interior y are calculated according to Eq. (9a), resulting in an accumulation of 
error at the distal end of the numerical integration. 

3. A new conjugate x field is then determined using Eq. (9b) for all nodes, 
including those on the boundary of R’. Unless the previously evaluated x and y fields 
were indeed solutions of Eqs. (1) and (2) on R’, the newly obtained x field will not be 
compatible with that iterated from Step 1. In fact, the value of xMM. j may fall short of h 
(too few meshes), or the values of x,+.~,~ may exceed h (too many meshes). In such 
cases it becomes necessary to add or delete mesh(es) in the &ire&ion (i.e., set 
A4 = Mf 1). 

4. With the newly defined M, Steps 1 through 3 are repeated until the distri- 
butions of y on either end section (Step 2) have converged. Such convergence will be 
achieved when the x field satisfies Bq. (1) on R’, which in turn is possible only if the 
previous y field determined from Step 2 is its conjugate. 
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5. When the x and y fields from the dual iterative procedure have converged, 
the main loop is exited. At this point, xMM-l,i < h < x~,~ for all j. A mean value GA 
is then calculated by averaging the values of 01 interpolated at x = X for each value ofj. 
We now adjust the cell dimension by setting dol = &/(M - 1) while keeping O/3 
unchanged. This new rectangular mesh has the property of mapping x2 onto cyz (=Z,,), 
and permits straightforward solution of Eq. (1) with a Dirichlet condition for x at the 
downstream boundary of the flow regime. 

Figure 2 shows orthogonal curvilinear meshes generated for periodic and discrete 
wall waves. Note that as the minimum channel gap d becomes small compared to the 
wavelength (in Fig. 2a, d/X = 0.209), the ratio M/N of the number of meshes in the 
a-direction to the number in the p-direction becomes large for square mesh. It may 
become desirable to use elongated mesh cells (Fig. 2~); this is accomplished by 
selecting an integer smaller than (M - 1) for the denominator when adjusting the 
mesh dimension dol. 

/ I , T--Y I I I I I, 
I I I I I 

I I I I I I I I I I IlIiiiiBlI I I I I I I 

FIG. 2. Typical orthogonal curvilinear mesh networks. 

(b) 

Although it is recognized that the mesh size (in the physical plane) influences the 
resolution and accuracy of subsequent finite-difference calculations for the usual 
reasons, it should be pointed out that another consequence of grid coarseness here is 
the distortion of mesh orthogonality itself. Since x and y are analytic functions in the 
transformed space, an index of grid nonorthogonality can be obtained based upon the 
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Cauchy-Riemann condition (ax/& = +/a/3). For each mesh node, we check the 
Cauchy-Riemann condition by evaluating its residual: 

(11) 

The points of largest RS for sinusoidal-wall channels were found to be on the channel 
wall at the points of greatest y (refer to point Win Fig. 2a); this is precisely the point 
where the mesh is coarsest in the physical plane. For the mesh of Fig. 2a (seven 
vertical nodes) the value of Rs at point W is found to be 1.75 %, while the value of Rs 
averaged over all the mesh nodes is 0.61%. If the number of vertica nodes is increased 
to 11, 8,‘3 at point W decreases to 0.79 %, and the grid average of RS decreases to 
0.25 %. 

3. PERISTALTIC POTENTIAL FLOW 

In the case of a peristaltic wave, the geometry of the flow region remains unchanged 
if the coordinate system is moving with the celerity c of the wave: 

x* = x - et; y” = g(x*). (12) 

At the onset of impulsive acceleration of a peristaltic wave, the predominant 
inertial effects result in an instantaneous irrotational flow which can be used as an 
initial condition for viscous computational flow simulation. The boundary conditions 
at the channel inlet and outlet are independent of the wall kinematics. In order to 
determine the peristaltic potential flow, either the longitudinal velocity or the distri- 
bution of 4 has to be prescribed at both ends of the channel. When these boundary 
conditions are analogous to those for cy the potential function 4 becomes proportional 
to 01. However, to accomodate numerical solutions for certain subregions, it is 
sometimes desirable to select boundary values of 01 which do not correspond to a 
meaningful irrotational flow. 

To save computer time in obtaining steady solutions for peristaltic pumping against 
a given K&-man number, it has been found expedient to select an initial potential 
flow whose discharge is approximately that of the anticipated fully developed viscous 
flow. An appropriate potential drop for such an initial condition can be evaluated 
from 

(13) 

Here QF can be estimated from the sum of the flow rate due to free pumping and that 
of a Poiseuille flow between parallel walls under the prescribed K&man number. 
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4. AN IMPLICIT FINITE-DIFFERENCE METHOD 

For the two-dimensional flow of a Newtonian fluid, the Navier-Stokes equations 
in an orthogonal curvilinear coordinate system (01, /3) take the form: 

=- 
2 ava i 

i i 
2 ava I 

+h,agz- h, -h,-zag h, ( 1 

and 

uv ah, u2 ah, 

=-~~+~~~[~(~~)+~(~~)I 2 

2 aua i 
+ h, -z- -qT x1- i > 

2 au a i ---- - 
t 1 h, ag sol h, 

+4+id&% 1 hll at c 
1 ah1 --_ -__ 

h&2 aP )I 
(15) 

In these equations, U and V denote dimensionless velocity components in the cx- and 
p-directions, respectively, P denotes the dimensionless pressure, T denotes the time, 
and R denotes the Reynolds number, which is defined as pcA/p (p = density, A = 
the amplitude of the channel wave and p = viscosity). For peristaltic flow, the 
reference velocity was chosen to be the celerity c of the wall wave. The equation of 
continuity is 

& (h,U) + + (h,V = 0. 

The reference quantities by which the dimensionless variables (U, V, P, and T) are 
multiplied to obtain their dimensional equivalents are, respectively, c, pc2, and A/c. 

A finite-difference formulation is employed to obtain an unsteady solution of 
Eqs. (14) to (16). In the IX-/I coordinate system, the curvilinear boundaries of the 
peristaltic channel region become straight-line segments (see Section 2), so that the 
flow region in the transformed plane may be subdivided into a rectangular mesh grid 
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(Fig. lb). The grid has (M - 1) x (N - 1) cells, each of dimension dot x d/3. The 
velocities U and V are defined, respectively, at the midsection of the left and bottom 
cell faces, with the pressure P defined at the cell center (refer to Fig. lb). Notice that 
U,,i is located one-half mesh length to the left of P,,j while V,,$ is one-half mesh 
length below Pi,j, analogous to the Cartesian mesh MAC cell structure. These 
notations require minimal code storage space (refer to the program of [9].) 

Finite-difference expressions for the velocity components at time T = (n f 1) AT 
can be derived from momentum balances at time T = (n + l/2) AT: 

(17) 

Due to spatial variation of hl and h, in Eqs. (14) and (15), the expressions for ti,i 
and viSj, which include the convective and diffusive terms plus part of the local 
acceleration term, become considerably more lengthy than their Cartesian coordinate 
counterparts [9,25]. 

The pressure at the cell center is obtained from a mass balance: 

In Eq. (19), the 5’s and y’s are entirely geometric factors, invovling only combinations 
of the metrical coefficients; Bi,j denotes a lengthy collection of 5’s and y’s (see 
Appendix A). The iterative solution procedure, adapted from that of Hung [9], is 
summarized in Fig. 3. 

From examination of Eqs. (4) and (14) through (16), it can be seen that two 
simplifications in coding are possible. First, these equations are invariant to multi- 
plication of either coordinate variable (LX or j3) by a constant (or equivalently, their 
difference forms are invariant to changes in either dol or A/l), since the respective 
metrical coefficients will be changed inversely. Thus, when coding difference expres- 
sions such as those of Appendix B, the values of da and Ap can be taken as unity, 
provided that the metrical coefficients are first scaled appropriately. A second simpli- 
fication, available when an analytical (CL-/~) coordinate system is employed, arises 
from the fact that the Cauchy-Riemann condition requires that hl and h2 at a given 
point be equal. Due to numerical error and to the relatively coarse grids used in the 
present study, the difference between the calculated values of h, and h, , while negli- 
gable in regions of highly refined physical mesh, often approached 1% in the regions 
of coarsest mesh. To avoid the possibility of introducing additional inaccuracy, it 
was decided to use the separate values of h, and hz in these equations. Ideally, an error 
analysis or test computation should be performed prior to implementing the second 
simplification. 
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Care must be taken to ensure rigorous momentum and mass conservation in 
Eqs. (17) to (19). It can be shown, for example, that in the limit as d 01 and dp approach 
zero, the Poisson pressure iteration of Eq. (19) simplifies to 

(20) 

For finite mesh size, however, ah,/t@ and ah&b are nonvanishing; variations of as 
much as 10 % in hl and h, were often noted within a single mesh segment for only 
moderately coarse (20 x 40) coordinate nets. It is therefore important (see Section 5), 
when substituting Eqs. (17) and (18) into Eq. (16), to use h values computed at the 

Set up a-B coordinate system. 

Calculate li j, li j, and “i j for all 
> I 

cells. 

I 
Iterate pn- 5 times for all points 

(except i=l, j=l) frm Equation ( 19 ). 

I 

Celculation for one time-advancement is 

completed. Set time index n = n + 1. 

be continued? 

I 3~. 3. Flow chart of implicit iterative procedure. 
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appropriate positions (e.g., h, at U,,j) within the cell prior to substituting into the 
continuity equation. Figure lb also shows the points of definition of the three 
necessary pairs of metrical coefficients (h, , h,), denoted, respectively, at the three 
points of evaluation by (H, G), (E, F), and (C, D). 

The values for Ua+1/2, Vn+l12, and P n+1/2 needed for Eqs. (17) to (19) can be obtained 
by linear interpolation in time if AT is very small. 

Since the peristaltic activity of the channel wall wave does not uniquely determine 
the resultant flow field, either the pressure or velocity distribution at the channel inlet 
and outlet must also be specified. If the pressure is prescribed at the inlet and at the 
outlet (with a pressure drop LIP,-,) and the lateral velocity component vanishes on 
both ends, the flow rate and other flow variables are the dependent variables. Because 
a characteristic fluid velocity upon which to base a Reynolds number is initially 
unavailable, it is convenient to characterize the flow in terms of the K&man number 

K = Apz-lpA2/p2. C-21) 

Also, to extend the range of wave celerities to the general case, which includes c = 0 
(i.e., flow through a stationary channel), it becomes appropriate to eliminate c as a 
reference variable in favor of p. This is readily accomplished by setting 

(22) 

It can then be seen that the Reynolds number no longer appears explicitly in Eqs. (14) 
and (15). Instead, the wave celerity is now involved only in the boundary conditions 
for U and V along the wall. 

The simplified treatment of the boundary conditions along curved walls is the main 
advantage afforded by the orthogonal curvilinear mesh. Since the cell faces can be 
made to coincide with segments of the curved boundary, the Cartesian velocity 
components (U’ and V’) at a point on the boundary at a cell midsection can be 
transformed to their a-/3 counterparts by 

(23) 

The expressions for [r,j and Q,~ for cells along the boundary are accordingly modified 
to allow for forward or backward spatial differencing (see Appendix B). 

The evaluation of pressure for cells bordering on the boundaries of the transformed 
region R’ requires one or more pressures outside of I?‘. The introduction of fictitious 
external cells [7] can be avoided by making direct use of the prescribed normal 
velocity component Vi,N on the boundary [9]. For example, when iterating cells 
adjacent to the peristaltic wall (j = N - l), Eq. (18) is used to obtain the “external” 
value 
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5. DEVELOPMENT OF TRANSIENT FLOWS 

To illustrate the present implicit finite-difference method, transient flow processes 
within a peristaltic bolus from the initial condition of potential flow to asymptotically 
steady viscous flow were simulated. For the case of no net pressure drop from inlet 
to outlet (free pumping), the development of viscous flow was sought by solving 
Eqs. (14), (15), and (16) along with a nonslip boundary condition. The velocity 
components along an elastic wall, for which the wall elements are assumed to move 
only transversely, become in the moving coordinates: 

U = -(CA/V) sec[tan-r(dx*/dy*)]; v = 0, (25) 

respectively. If the wall is instead taken to be inextensible, local variations in the 
curvature of the wave require that wall elements move longitudinally as well as 
transversely. It can be shown [ll] that in the moving reference frame this inexten- 
sibility condition results in a small perturbation in the U component, but that the 
V component is still zero. 

The transient flow development can be appreciated from the instantaneous moving 
frame discharge between the bolus axis and the wall, or equivalently, the stream 
function & . A small discrepancy Q in the integrated flow rates passing through each 
constant --01 section reflects the proper choice of mesh size and convergence criteria. 

Due to the complexity of the finite-difference equations in the orthogonal curvilinear 
coordinate system, and also because of the varying mesh sizes in the physical plane, 
no rigorous analysis of stability or convergence criteria was undertaken. Instead, 
a series of trial runs was made, and the effects of the time increment d T, the pressure 
convergence criterion, and the velocity convergence criterion upon &,, E$ and the 
computation time were evaluated. Figure 4 shows the behavior of & and cl versus T 

A 

FIG. 4. Effect of time increment LIT upon transient flow development. Single bolus, A/h = 0.164, 
d/A = 0.209, R = 2.35, K = 0. Initially, &, = -2.561 (potential flow). 
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FIG. 5. Effects of pressure convergence criterion (ERRP) upon & , q, , and the axial pressure 
distribution. 

for various values of AT. It can be seen that neither &, nor E* is sensitive to AT at 
this range. However, for AT = 0.01, several small local irregularities were noted in 
the velocity field after five time increments. These numerical discrepancies dis- 
appeared when dT = 0.001, 0.0025, or 0.005. It was therefore decided to use 
LIT = 0.005 for the remaining computations for this case (Fig. 4 through 8). The 
influence of small oscillations in the values of P was reduced by checking the relative 
accumulated difference in P every five pressure iterations. Figure 5 shows the effect 
of the pressure convergence criterion (ERRP) upon the axial distribution of pressure 
at T = 0.025. Selection of the convergence criterion for pressure iteration depends 
upon the anticipated characteristics of the transient flow processes. In the case of 
simulating an oscillatory flow, a more stringent criterion (e.g., checking the relative 
accumulated difference in P every 15 pressure iterations) is often desirable, so that the 
number of iterations of the velocity, and the total computational time required, will be 
reduced [9]. Should the convergence criterion for P be too coarse, numerical instability 
may occur. The number of iterations per time step for U and V have been found to 
increase when the temporal variations in the flow processes are stronger. The results 
shown in Figs. 4, 5, and 6 demonstrate a typical set of calculations useful in the final 
selection of the convergence criteria and the magnitude of the time increment. 

Although the mean values of #W and E& (see table in Fig. 5) are insensitive to the 
pressure convergence criteria in this range, a significant error in the local pressures is 
noted for ERRP = 0.01. However, the small differences in the pressure field for 
ERRP = 0.00005, 0.0002, and 0.001 are purchased at the expense of significant 
increases in computing time. For this reason, a value of ERRP = 0.001 was chosen. 
For a constant Karmsin number (in this case K = 0), the number of pressure iterations 
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--I 
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NT 

FIG. 6. Trabition from potential flow to asymptotic steady state. Elastic wall condition, with 
AT = 0.005. 

Fro. 7. Moving reference frame stream function (above) and pressure field (below) for asymp- 
to%ally steady flow. Contours of pressure are normalized to (P - P&/P,,, , where Prer = 552. 
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necessary to satisfy a given convergence criterion decreases as the time increases. 
In the case of oscillatory flow (i.e., K being a function of time) an increase in the 
required number of pressure iterations is anticipated. 

The transition from potential flow to asymptotic steady flow is shown in Fig. 6. 
At T = 1.00 (=200 AT), the time rate of change of the discharge (or I d&,/AT 1) 
has decreased to 1.6 % of its initial value; at this time the flow can be assumed to have 
reached steady state. The maximum value of E* is decreased from an initial value of 
1.88 % (potential flow) to 1.14 % for steady flow at a characteristic Reynolds number 
of 2.35 (based on the mean velocity at section a,). Contour plots of the asymptotically 
steady pressure field and the moving reference frame stream function are shown in 
Fig. 7. By comparison with the irrotational stream patterns (see coordinate mesh, 
Fig. 2a), the viscous solution exhibits much greater streamline curvature in the core. 
A region of high pressure is observed in the trailing half of the bolus near the point of 
maximum contractile wall velocity; a region of low pressure is centered somewhat 
forward of the point of most rapid wall distention. A comparison of the asymptotically 
steady (NT = 300) velocity vector field for an inextensible wall and the experimentally 
observed flow field [I l] is shown in Fig. 8. The velocity vector % plot scaling factor 

_-a--/_ 

-+-/__ 

_-------- -____ 
_- _____ _, (. . ---- -cz, - .--.-___-- 

FIG. 8. Comparison of calculated velocity vector field (above) with experimentally observed 
flow pattern (below) for the inextensible wall boundary condition. 

and the camera exposure time tc were chosen such that a given tracer path length 
can be approximated by / p 1 tc . Detailed computational results for a variety of 
peristaltic flows, as well as experimental flow observations, are reported in the 
dissertation of Brown [29]. 

Further evidence of the validity of the present numerical method lies in the insen- 
sitivity of the steady solution to the initial conditions, as is to be expected physically 
(see Fig. 9). The asymptotically steady condition for this case is obtained from 
potential flows of different discharges. In the moving frame, tiW is negative, while 
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in the fixed frame the temporal mean discharge QF at a section is positive. The 
temporal variations in flow rate reflect the development of viscous effects from the 
initial n-rotational flow patterns. 

As is well known with MAC-type methods, a nonlinear instability arises in the 
momentum equations if the divergence of velocity (V . V) is taken to be identically 

FIG. 9. Flow establishment under two initial conditions (potential flow discharge). A’h : 0.164, 
d h = 0.131, R = 2.38, K : 0, AT -: 0.0007. Elastic wall condition. 

zero at T = (n) d T as well as at T = (n + 1) d T [8, 17, 181. However, similar 
computational experiments were not reported for the implicit scheme of [9]. Curves A 
and B in Fig. 10 depict the calculated flow rates for computations including and 
excluding, respectively, the term (V . e), (i.e., at T = (n) zl i”) in the pressure iteration. 
The corresponding wall stream function discrepancies are shown by curves a and b, 
reflecting smaller Q, for the calculation which included (G - V)“. Also shown in this 
figure are the effects of the improper (continuum limit) form of the finite difference 
equation for pressure (see Section 4). As indicated by curves C and c, a much more 
serious error is induced when the pressure is iterated from Eq. (20) instead of from 
Eq. (19). Although the velocity and pressure fields still settle, the resultant discharge 
(curve C) deviates markedly from curves A and B. The unacceptability of curve C 
is also clearly demonstrated by the large values of E& (curve c); the increase of two 
orders of magnitude (over curve a) implies that the gross continuity condition has 
been violated. 
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FIG. 10. The behavior of some nonconservative finite-difference formulations. 

APPENDIX A: FINITE-DIFFERENCE EXPRESSIONS 

FOR THE ABBREVIATED TERMS IN EQ. (19) 

For cells not bordering on the boundaries of the region R', the term & takes the 
form 

Bi.j = (l/dol)iti+l.j[-Di.j - i(Dt+l.j - oi-~..dl 
+ Si.dDi.i - HDi+l.i - oi-l,i)lI + (1/dP) 
x {?li.i+l[-ci.i - fCCi.j+I - C&j-J1 + Q,ifci,j - f(Ci.i+I - ci.i-l)lI. 

The six purely geometrical terms are 
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74 = (*) [C&i - t(G,j+l - ci.i-l)l. 

The differential expressions for E and 7 are, respectively, 

lJn u au -- 
‘=AT H&x 

v au UV aH v2 ac -- - - 
Gag -- HG a/3 + 

-- 
HG aa 

, 2 av a I 
i ) 

2 av a I 
’ HTa(llG-?xagH i 1 

and 

V” u av v av uv aF u3 aE ---__ 
T=AT Ear24 

-_- --- -__ 
F aP m aor + EF ag 

2 au a i 
i 1 

2 au a i +Faaag E ---- - 
i 1 E ag aa F 

APPENDIX B: FINITE-DIFFERENCE BOUNDARY CONDITION FOR ( 

For cells bordering on the peristaltic wall (j = N - l), the finite-difference 
boundary condition for .$ becomes 

8i.j = tuti/AT) - [(u~.ilH~.~)(l/2A~)(u~+l,~ - U+~.j)l 
- w3G,,iwi,i+l + visj + bsj + ~~+,)(2/3A19) 



362 HUNG AND BROWN 

ACKNOWLEDGMENTS 

The authors would like to express their appreciation to Dr. Hsing-Hwa Shih for his contributions 
during the early phase of problem formulation, and to Ms. Leslie Thompson for her secretarial 
assistance. NSF Grant GK-31514 to T.K.H., support for T.D.B. under NIH Training Grant GM0 
1455, and the excellent services provided by the Computation Center of Carnegie-Mellon University 
are also acknowledged. 

REFERENCES 

1. D. N. G. ALLEN AND R. V. SOUTHWELL, Quart. J. Mech. Appl. Math. 8 (1955), 129-145. 
2. A. A. AMSDEN AND C. W. HIRT, J. Computational Phys. 11 (1973), 348-359. 
3. W. D. BARFIELD, J. Computational Pirys. 5 (1970), 23-33. 



SOLVING THE NAVIER-STORES EQUATION 363 

4. W. D. BARFIELD, J. Computational Phys. 6 (1970), 417429. 
5. T. GAL-CHEN AND R. C. J. SOMERVILLE, J. Computational Phys. 17 (1975), 209-228. 
6. T. GAL-CHEN AND R. C. J. SOMERVILLE, J. Computational Phys. 17 (1975), 276-310. 
7. F. H. HARL~W AND J. E. WELCH, Phys. Flutds 8 (1965). 
8. C. W. HIRT AND F. W. HARLOW, J. Computational Phys. 2 (1967), 114-199. 
9. T. K. HUNG, Vortices in Pulsatile Flows, in “Proceedings of the Fifth International Congress 

on Rheology,” Vol. 2, pp. 115-127, 1970. 
10. T. K. HUNG, Development of Computational Methods for Biofluid Dynamics, in “ASCE 

National Structural Engineering Convention,” Meeting preprint 2477, April, 1975. 
11. T. K. HUNG AND T. D. BROWN, J. Fluid Me&. 73, part 1 (1976), 77-96. 
12. T. K. HUNG AND G. B. SCHUESSLER, “Computational Analysis as an Aid to the Design of Heart 

Valves,” Chemical Engineering Progress Symposium Series Vol. 67, No. 114, 1971. 
13. M. Y. JAFFRIN AND A. H. SHAPIRO, Ann. Reu. Fluid Mech. (1971). 
14. J. S. LEE AND Y. C. FUNG, J. Appl. Mech. 37 (1970), 9-17. 
15. R. MEYDER, J. Computational Phys. 17 (1975), 53-67. 
16. H. I. PADMANEBHAM, W. J. AMES, J. F. KENNEDY, AND T. K. HUNG, J. Engrg. Math. 4 (1970). 
17. S. A, PIACSEK AND G. P. WILLIAMS, J. Computational Phys. 6 (1970), 39245. 
18. P. J. ROACHE, “Computational Fluid Dynamics,” Hermosa, Albuquerque, N.M., 1972. 
19. A. THOM, Proc. Royal Sot. Ser. A 141 (1933). 
20. A. THOM AND C. J. APELT, “Field Computations in Engineering and Physics,” Van Nostrand, 

London, 1961. 
21. J. F. THOMPSON, F. C. THAMES, AND C. W. MASTIN, J. Computational Phys. 15 (1974), 299-319. 
22. J. F. THOMPSON, F. C. THAMES, R. L. WALKER, AND S. P. SHANKS, Numerical Solutions of the 

Unsteady Navier-Stokes Equations for Arbitrary Bodies Using Boundary-Fitted Curvilinear 
Coordinates, in “Arizona/AFOSR Symposium on Unsteady Aerodynamics, Tuscan, Ariz., 
March 18-20, 1975.” 

23. J. A. VIECELLI, J. Computational Phys. 4 (1969), 543-551. 
24. J. A. VIECELLI, J. Computational Phys. 8 (1971), 119-143. 
25. J. E. WELCH, F. H. HARLOW, J. P. SHANNON, AND B. J. DALY, “The MAC Method: A Comput- 

ing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving 
Free Surfaces,” Report LA-3425, Los Alamos Scientific Laboratory, March, 1966. 

26. A. M. WINSLOW, J. Computational Phys. 2 (1967), 149-172. 
27. B. J. DALY, J. Biomech. 9, 7 (1976), 465-475. 
28. C. S. PESKIN, J. Computational Phys. 10 (1972), 252-271. 
29. T. D. BROWN, “Computational and Experimental Studies of Two-Dimensional Nonlinear 

Peristaltic Pumping,” Ph.D. Thesis, Carnegie-Mellon Univ., 1976. 


